Weak Forms of γ -Open Sets and New Separation Axioms

Hariwan Z. Ibrahim Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq E-mail: hariwan_math@yahoo.com

Abstract— In this paper, we introduce some generalizations of γ -open sets and investigate some properties of the sets. Moreover, we use them to obtain new separation axioms.

Index Terms— γ -open, α - γ -open, pre- γ -open, β - γ -open, b- γ -open.

1 INTRODUCTION

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless less otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

Let (X, τ) be a space and A a subset of X. An operation γ on a topology τ [8] is a mapping from τ in to power set P(X) of X such that $V \subset \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [8] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subset A$. Then, τ_{γ} set denotes the of all γ -open set in X. Clearly $\tau_{\gamma} \subset \tau$. Complements of γ -open sets are called γ -closed. The τ_{γ} -interior [7] of A is denoted by $\tau_{\gamma} \subset \tau$. Complements of γ -open sets are τ_{γ} -Int(A) and defined to be the union of all γ -open sets of X contained in A. A topological X with an operation γ on τ is said to be γ -regular [8] if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V. It is also to be noted that $\tau = \tau_{\gamma}$ if and only if X is a γ -regular space [8].

Definition 1.1

A subset A of a space X is said to be:

- 1. α -open [6] if A \subseteq Int(Cl(Int(A)));
- 2. semi-open [4] if $A \subseteq Cl(Int(A))$;
- 3. pre-open [5] if $A \subseteq Int(Cl(A))$;
- 4. β -open [1] if $A \subseteq Cl(Int(Cl(A)));$
- 5. b-open [2] if $A \subseteq Int(Cl(A)) \cup Cl(Int(A))$.

In this paper we introduce and investigate the new notions called α - γ -open sets, pre- γ -open sets, β - γ -open sets and b- γ -open sets which are weaker than γ -open. Moreover, we use these notions to obtain new separation axioms.

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq. <u>E-mail</u>: hariwan_math@yahoo.com

2 Weak Forms Of γ-Open Sets

Definition 2.1

A subset A of a space X is said to be:

- 1. α - γ -open if A $\subseteq \tau_{\gamma}$ -Int(Cl(τ_{γ} -Int(A)));
- 2. pre- γ -open if A $\subseteq \tau_{\gamma}$ -Int(Cl(A));
- 3. β - γ -open if A \subseteq Cl(τ_{γ} -Int(Cl(A)));
- 4. b- γ -open if $A \subseteq \tau_{\gamma}$ -Int(Cl(A)) \cup Cl(τ_{γ} -Int(A)).

Lemma 2.2

Let (X, τ) be a topological space, then the following properties hold: A subset A of a space X is said to be:

1

- 1. Every γ -open set is α - γ -open.
- 2. Every α - γ -open set is pre- γ -open.
- 3. Every pre- γ -open set is b- γ -open.
- 4. Every b- γ -open set is β - γ -open.

Proof

- 1. If A is a γ -open set, then $A = \tau_{\gamma}$ -Int(A). Since $A \subseteq Cl(A)$, then $A \subseteq Cl(\tau_{\gamma}$ -Int(A)) and $A \subseteq \tau_{\gamma}$ -Int($Cl(\tau_{\gamma}$ -Int(A))). Therefore A is α - γ -open.
- 2. If A is an α - γ -open set, then A $\subseteq \tau_{\gamma}$ -Int(Cl(τ_{γ} -Int(A))) $\subseteq \tau_{\gamma}$ -Int(Cl(A)). Therefore A is pre- γ -open.
- 3. If A is pre- γ -open, then $A \subseteq \tau_{\gamma}$ -Int(Cl(A)) $\subseteq \tau_{\gamma}$ -Int(Cl(A)) \cup Cl(τ_{γ} -Int(A)). Therefore A is b- γ -open.
- 4. If A is b- γ -open, then A $\subseteq \tau_{\gamma}$ -Int(Cl(A)) \cup Cl(τ_{γ} -Int(A)) \subseteq Cl(τ_{γ} -Int(Cl(A))) \cup Cl(τ_{γ} -Int(A)) \subseteq Cl(τ_{γ} -Int(Cl(A))). Therefore A is β - γ -open.

Since every γ -open set is open, then we have the following diagram for properties of subsets.

 γ -open $\rightarrow \alpha$ - γ -open \rightarrow pre- γ -open \rightarrow b- γ -open \rightarrow β - γ -open

The converses need not be true as shown by the following examples.

Example 2.3

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ if $A = \{a, b\}$ and $\gamma(A) = X$ otherwise. Clearly, $\tau_{\gamma} = \{\phi, \{a, b\}, X\}$. Then $\{a\}$ is an open set which is not β - γ -open. **Example 2.4**

Let X = R with the usual topology τ and $\gamma(A) = A$ for all $A \in \tau$. Let $A = Q \cap [0, 1]$. Then A is a β - γ -open set which is not b- γ -open.

Example 2.5

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ if $A = \{b\}$ and $\gamma(A) = X$

if $A \neq \{b\}$. Clearly, $\tau_{\gamma} = \{\phi, \{b\}, X\}$. Then $\{b, c\}$ is a b- γ -open set which is not pre- γ -open.

Example 2.6

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then $\{a, c\}$ is a pre- γ -open set which is not α - γ -open.

Example 2.7

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ if $A = \{a\}$ and $\gamma(A) = X$ if $A \neq \{a\}$ Clearly, $\tau_{\gamma} = \{\phi, \{a\}, X\}$. Then $\{a, b\}$ is an α - γ -open set which is not γ -open.

Lemma 2.8

If U is an open set, then $Cl(U \cap A) = Cl(U \cap Cl(A))$ and hence $U \cap Cl(A) \subseteq Cl(U \cap A)$ for any subset A of a space X [3].

Theorem 2.9

If A is a pre- γ -open subset of a space (X, τ) such that $U \subseteq A \subseteq Cl(U)$ for a subset U of X, then U is a pre- γ -open set.

Proof

Since $A \subseteq \tau_{\gamma}$ -Int(Cl(A)), $U \subseteq \tau_{\gamma}$ -Int(Cl(A)). Also Cl(A) \subseteq Cl(U) implies that τ_{γ} -Int(Cl(A)) $\subseteq \tau_{\gamma}$ -Int(Cl(U)). Thus $U \subseteq \tau_{\gamma}$ -Int(Cl(A)) $\subseteq \tau_{\gamma}$ -Int(Cl(U)) and hence U is a pre- γ -open set.

Theorem 2.10

A subset A of a space (X, τ) is semi-open if A is β - γ -open and τ_{γ} -Int(Cl(A)) \subseteq Cl(Int(A)).

Proof

Let A be β - γ -open and τ_{γ} -Int(Cl(A)) \subseteq Cl(Int(A)). Then A \subseteq Cl(τ_{γ} -Int(Cl(A))) \subseteq Cl(Cl(Int(A))) = Cl(Int(A)). And hence A semi-open.

Proposition 2.11

The intersection of a pre- γ -open set and an open set is pre-open. **Proof**

Let A be a pre- γ -open set and U be an open set in X. Then $A \subseteq \tau_{\gamma}$ -Int(Cl(A)) and Int(U) = U, by Lemma 2.8, we have $U \cap A \subseteq$ Int(U) $\cap \tau_{\gamma}$ -Int(Cl(A)) \subseteq Int(U) \cap Int(Cl(A)) = Int(U \cap Cl(A)) \subseteq Int(Cl(U $\cap A$)). Therefore, $A \cap U$ is pre-open.

Proposition 2.12

The intersection of a β - γ -open set and an open set is β -open.

Proof

Let U be an open set and A a β - γ -open set. Since every γ -open set is open, by Lemma 2.8, we have

 $U \cap A \subseteq U \cap Cl(\tau_{\gamma}\text{-Int}(Cl(A)))$

- \subseteq U \cap Cl(Int(Cl(A)))
 - \subseteq Cl(U \cap Int(Cl(A)))

 $= Cl(Int(U) \cap Int(Cl(A)))$

 $= Cl(Int(U \cap Cl(A)))$

 \subseteq Cl(Int(Cl(U \cap A))).

This shows that $U \cap A$ is β -open.

Proposition 2.13

The intersection of a b- γ -open set and an open set is b-open.

Proof

Let A be b- γ -open and U be open, then A $\subseteq \tau_{\gamma}$ -Int(Cl(A)) \cup Cl(τ_{γ} -Int(A)) and U = Int(U). Then we have U \cap A \subseteq U \cap [τ_{γ} -Int(Cl(A)) \cup Cl(τ_{γ} -Int(A))]

 $= [U \cap \tau_{\gamma} - Int(Cl(A))] \cup [U \cap Cl(\tau_{\gamma} - Int(A))]$

 $= [Int(U) \cap \tau_{\gamma} - Int(Cl(A))] \cup [U \cap Cl(\tau_{\gamma} - Int(A))]$

 $\subseteq [Int(U) \cap Int(Cl(A))] \cup [U \cap Cl(Int(A))]$

 $\subseteq [Int(U \cap Cl(A))] \cup [Cl(U \cap Int(A))]$

 $\subseteq [Int(Cl(U \cap A))] \cup [Cl(Int(U \cap A))].$

This shows that $U \cap A$ is b-open.

We note that the intersection of two pre- γ -open (resp. b- γ -open, β - γ -open) sets need not be pre-open (resp. b- γ -open, β - γ -open) as can be seen from the following example:

Example 2.14

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Define an operation γ on τ by γ (A) = A for all A $\in \tau$. Let A = $\{a, c\}$ and B = $\{b, c\}$, then A and B are pre- γ -open (resp. b- γ -open, β - γ -open), but A \cap B = $\{c\}$ which is not pre-open (resp. b- γ -open, β - γ -open).

Proposition 2.15

The intersection of an α - γ -open set and an open set is α -open.

Theorem 2.16

If {A_k: $k \in \Delta$ } is a collection of b- γ -open (resp. α - γ -open, pre- γ -open, β - γ -open) sets of a space (X, τ), then $\cup_{k \in \Delta} A_k$ is b- γ -open (resp. α - γ -open, pre- γ -open, β - γ -open).

Proof

We prove only the first case since the other cases are similarly shown. Since $A_k \subseteq \tau_{\gamma}$ -Int(Cl(A_k)) \cup Cl(τ_{γ} -Int(A_k)) for every $k \in \Delta$, we have

$$\begin{split} & \cup_{k \in \Delta} A_k \subseteq \cup_{k \in \Delta} [\tau_{\gamma} \text{-Int}(Cl(A_k)) \cup Cl(\tau_{\gamma} \text{-Int}(A_k))] \\ & \subseteq [\bigcup_{k \in \Delta} \tau_{\gamma} \text{-Int}(Cl(A_k))] \cup [\bigcup_{k \in \Delta} Cl(\tau_{\gamma} \text{-Int}(A_k))] \\ & \subseteq [\tau_{\gamma} \text{-Int}(\bigcup_{k \in \Delta} Cl(A_k))] \cup [Cl(\bigcup_{k \in \Delta} \tau_{\gamma} \text{-Int}(A_k))] \\ & \subseteq [\tau_{\gamma} \text{-Int}(Cl(\bigcup_{k \in \Delta} A_k))] \cup [Cl(\tau_{\gamma} \text{-Int}(\bigcup_{k \in \Delta} A_k))]. \\ & \text{Therefore, } \bigcup_{k \in \Delta} A_k \text{ is } b \text{-} \gamma \text{-open.} \end{split}$$

We note that the intersection of two pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) sets need not be pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) as can be seen from the following example:

Example 2.17

Let X = {a, b, c} and $\tau = P(X)$. Define an operation γ on τ by $\gamma(A) = A$ if A = {a, b} or {a, c} or {b, c} and $\gamma(A) = X$ otherwise. Clearly, $\tau_{\gamma} = \{\varphi, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let A = {a, b} and B = {a, c}, then A and B are pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open), but A \cap B = {a} which is not pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open).

Proposition 2.18

Let A be a b- γ -open set such that τ_{γ} -Int(A) = φ . Then A is pre- γ -open.

A space (X, τ) is called a door space if every subset of X is open or closed.

Proposition 2.19

If (X, τ) is a door space and γ -regular, then every pre- γ -open set is γ -open.

Proof

Let A be a pre- γ -open set. If A is open, then A is γ -open. Otherwise,

A is closed and hence $A \subseteq \tau_{\gamma}$ -Int(Cl(A)) = τ_{γ} -Int(A) \subseteq A. Therefore, $A = \tau_{\gamma}$ -Int(A) and thus A is a γ -open set.

3 New Separation Axioms

Definition 3.1

A topological space (X, τ) with an operation γ on τ is said to be:

- pre-γ-T₀ (resp α-γ-T₀, b-γ-T₀, β-γ-T₀) if for each pair of distinct points x, y in X, there exists a pre-γ-open (resp. α-γ-open, b-γ-open, β-γ-open) set U such that either x ∈ U and y ∉ U or x ∉ U and y ∈ U.
- pre-γ-T₁ (resp. α-γ-T₁, b-γ-T₁, β-γ-T₁) if for each pair of distinct points x, y in X, there exist two pre-γ-open (resp. α-γ-open, b-γ-open, β-γ-open) sets U and V such that x ∈ U but y ∉ U and y ∈ V but x ∉ V.
- **3.** pre- γ -T₂ (resp. α - γ -T₂, b- γ -T₂, β - γ -T₂) if for each distinct points x, y in X, there exist two disjoint pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) sets U and V containing x and y respectively.

Remark 3.2

For a topological space (X, τ) with an operation γ on τ , the following properties hold:

- 1. If (X, τ) is α - γ - T_i , then it is pre- γ - T_i , for i = 0, 1, 2.
- 2. If (X, τ) is pre- γ -T_i, then it is b- γ -T_i, for i = 0, 1, 2.
- 3. If (X, τ) is b- γ -T_i, then it is β - γ -T_i, for i = 0, 1, 2.

Definition 3.3

A subset A of a topological space X is called a pre- γ D-set (resp. α - γ D-set, b- γ D-set, β - γ D-set) if there are two pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) sets U and V such that U \neq X and A = U \ V. It is true that every pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) set U different from X is a pre- γ D-set (resp. α - γ D-set, b- γ D-set, β - γ D-set) if A = U and V = ϕ . So, we can observe the following. **Remark 3.4**

Every proper pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) set is a pre- γ D-set (resp. α - γ D-set, b- γ D-set, β - γ D-set).

Remark 3.5

For a topological space (X, τ) with an operation γ on τ , the following properties hold:

- 1. Every α - γ D-set is pre- γ D-set.
- 2. Every pre- γ D-set is b- γ D-set.
- 3. Every b- γ D-set is β - γ D-set.

Definition 3.6

A topological space (X, τ) with an operation γ on τ is said to be:

- pre-γ-D₀ (resp. α-γ-D₀, b-γ-D₀, β-γ-D₀) if for any pair of distinct points x and y of X there exists a pre-γD-set (resp. α-γD-set, b-γD-set, β-γD-set) of X containing x but not y or a γ-bD-set of X containing y but not x.
- pre-γ-D₁ (resp. α-γ-D₁, b-γ-D₁, β-γ-D₁) if for any pair of distinct points x and y of X there exist two pre-γD-sets (resp. α-γD-sets, b-γD-sets, β-γD-sets) U and V such that x ∈ U but y ∉ U and y ∈ V but x ∉V.
- pre-γ-D₂ (resp. α-γ-D₂, b-γ-D₂, β-γ-D₂) if for any pair of distinct points x and y of X there exist disjoint pre-γD-sets (resp. α-γD-sets, b-γD-sets, β-γD-sets) G and E of X containing x and y, respectively.

Remark 3.7

For a topological space (X,τ) with an operation γ on $\tau,$ the following

fore, properties hold:

- 1. If (X, τ) is α - γ - D_i , then it is pre- γ - D_i , for i = 0, 1, 2.
- 2. If (X, τ) is pre- γ -D_i, then it is b- γ -D_i, for i = 0, 1, 2.
- 3. If (X, τ) is b- γ -D_i, then it is β - γ -D_i, for i = 0, 1, 2.

Remark 3.8

For a topological space (X, τ) with an operation γ on τ , the following properties hold:

- 1. If (X, τ) is pre- γ -T_i (resp. α - γ -T_i, β - γ -T_i, β - γ -T_i), then it is pre- γ -T_{i-1} (resp. α - γ -T_{i-1}, β - γ -T_{i-1}), for i = 1, 2.
- 2. If (X, τ) is pre- γ -T_i (resp. α - γ -T_i, b- γ -T_i, β - γ -T_i), then it is pre- γ -D_i (resp. α - γ -D_i, b- γ -D_i), for i = 0, 1, 2.
- 3. If (X, τ) is pre- γ -D_i (resp. α - γ -D_i, b- γ -D_i, β - γ -D_i), then it is pre- γ -D_{i-1} (resp. α - γ -D_{i-1}, b- γ -D_{i-1} β - γ -D_{i-1}), for i = 1, 2.

Theorem 3.9

A space X is pre- γ -D₁ (resp. α - γ -D₁, b- γ -D₁, β - γ -D₁) if and only if it is pre- γ -D₂ (resp. α - γ -D₂, b- γ -D₂, β - γ -D₂).

Proof

Necessity. Let x, $y \in X$, $x \neq y$. Then there exist pre- γ D-sets (resp. α - γ D-sets, b- γ D-sets, β - γ D-sets) G₁, G₂ in X such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1 , U_2 , U_3 and U_4 are pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

i. $x \notin U_3$. By $y \notin G_1$ we have two subcases:

(a) $y \notin U_1$. From $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$, and by $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Therefore $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \varphi$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, and $y \in U_2$. Therefore $(U_1 \setminus U_2) \cap U_2 = \phi$.

ii. $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence $(U_3 \setminus U_4) \cap U_4 = \varphi$. Therefore X is pre- γ -D₂ (resp. α - γ -D₂, b- γ -D₂, β - γ -D₂).

Sufficiency. Follows from Remark 3.8 (3).

Theorem 3.10

A space is pre- γ -D₀ (resp. α - γ -D₀, b- γ -D₀, β - γ -D₀) if and only if it is pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀, β - γ -T₀).

Proof

Suppose that X is pre- γ -D₀ (resp. α - γ -D₀, b- γ -D₀, β - γ -D₀). Then for each distinct pair x, y \in X, at least one of x, y, say x, belongs to a pre- γ D-set (resp. α - γ D-set, b- γ D-set, β - γ D-set) G but y \notin G. Let G = U₁\U₂ where U₁ \neq X and U₁, U₂ are two pre- γ -open (resp. α - γ -open, b- γ -open, β - γ -open) sets. Then x \in U₁, and for y \notin G we have two cases: (a) y \notin U₁, (b) y \in U₁ and y \in U₂. In case (a), x \in U₁ but y \notin U₁. In case (b), y \in U₂ but x \notin U₂. Thus in both the cases, we obtain that X is pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀).

Conversely, if X is pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀, β - γ -T₀), by Remark 3.8 (2), X is pre- γ -D₀ (resp. α - γ -D₀, b- γ -D₀, β - γ -D₀).

Corollary 3.11

If (X, τ) is pre- γ -D₁ (resp. α - γ -D₁, b- γ -D₁, β - γ -D₁), then it is pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀, β - γ -T₀).

Proof

Follows from Remark 3.8 (3) and Theorem 3.10.

Definition 3.12

A point $x \in X$ which has only X as the pre- γ -neighborhood (resp. α - γ -neighborhood, b- γ -neighborhood, β - γ neighborhood) is called a pre- γ -neat point (resp. α - γ -neat point, b- γ -neat point, β - γ -neat point).

Theorem 3.13

For a pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀, β - γ -T₀) topological space (X, τ) the following are equivalent:

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 ISSN 2229-5518

- 1. (X, τ) is pre- γ -D₁ (resp. α - γ -D₁, b- γ -D₁, β - γ -D₁).
- (X, τ) has no pre-γ-neat point (resp. α-γ-neat point, b-γ-neat point, β-γ-neat point).

Proof

1 ⇒ 2. Since (X, τ) is pre-γ-D₁ (resp. α-γ-D₁, b-γ-D₁, β-γ-D₁), then each point x of X is contained in a pre-γD-set (resp. α-γD-set, b-γDset, β-γD-set) A = U \ V and thus in U. By definition U≠ X. This implies that x is not a pre-γ-neat point (resp. α-γ-neat point, b-γ-neat point, β-γ-neat point).

2 ⇒ 1. If X is pre-γ-T₀ (resp. α-γ-T₀, b-γ-T₀, β-γ-T₀), then for each distinct pair of points x, y ∈ X, at least one of them, x (say) has a pre-γ-neighborhood (resp. α-γ-neighborhood, b-γ-neighborhood, β-γ-neighborhood) U containing x and not y. Thus which is different from X is a pre-γD-set (resp. α-γD-set, b-γD-set, β-γD-set). If X has no pre-γ-neat point (resp. α-γ-neat point, b-γ-neat point, β-γ-neat point), then y is not a pre-γ-neat point (resp. α-γ-neat point, b-γ-neat point, β-γ-neat point, β-γ-neat point). This means that there exists a pre-γ-neighborhood (resp. α-γ-neighborhood, b-γ-neighborhood, β-γ-neighborhood) V of y such that V≠ X. Thus y ∈ V \ U but not x and V \ U is a pre-γD-set (resp. α-γD-set, b-γD-set, β-γD-set). Hence X is pre-γ-D₁ (resp. α-γ-D₁, β-γ-D₁).

Corollary 3.14

A pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀, β - γ -T₀) space X is not pre- γ -D₁ (resp. α - γ -D₁, b- γ -D₁, β - γ -D₁) if and only if there is a unique pre- γ -neat point (resp. α - γ -neat point, b- γ -neat point, β - γ -neat point) in X. **Proof**

FIOOI We only

We only prove the uniqueness of the pre- γ -neat point (resp. α - γ -neat point, b- γ -neat point, β - γ -neat point). If x and y are two pre- γ -neat points (resp. α - γ -neat points, b- γ -neat points, β - γ -neat points) in X, then since X is pre- γ -T₀ (resp. α - γ -T₀, b- γ -T₀, β - γ -T₀), at least one of x and y, say x, has a pre- γ -neighborhood (resp. α - γ -neighborhood, b- γ -neighborhood, β - γ -neighborhood) U containing x but not y. Hence U \neq X. Therefore x is not a pre- γ -neat point (resp. α - γ -neat point, b- γ -neat point, β - γ -neat point) which is a contradiction.

REFERENCES

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit Univ. 12: 77-90 (1983).
- [2] D. Andrijevic, On b-open sets, Mat. Vesnik 48: 59-64 (1996).
- [3] R. Engelking, General Topology, Heldermann Veriag Berlin, 2nd edition, (1989).
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70: 36-41 (1963).
- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 51:47-53 (1982).
- [6] O. Njstad, On some classes of nearly open sets, Pacific J. Math. 15: 961-970 (1965).
- [7] G. Sai Sundara Krishnan, A new class of semi open sets in a topological space, Proc. Ncmcm, Allied Publishers, New Delhi, 305-311 (2003).
- [8] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36: 175-184 (1991).